Differential activation of Rac1 and RhoA in neuroblastoma cell fractions.

阅读:4
作者:Seifert Jennifer L, Som Sonyta, Hynds Dianna L
The Rho guanine nucleotide triphosphatases (GTPases) Rac1 and RhoA are important regulators of axon growth. However, the specific roles each plays are complicated by implications that each is involved in promoting and inhibiting neurite outgrowth. Differential regulation of Rac1 and RhoA activation in cell bodies and growth cones may be important in directing axon growth. To test this, we separated neuroblastoma cells into growth cone and cell body fractions and assessed Rac1 and RhoA activation in response to outgrowth promoters, serum withdrawal and 8-bromoadeosine-5',3'-cyclic monophosphate (8-Br-cAMP), and outgrowth inhibitors, chondroitin sulfate proteoglycans (CSPGs) or semaphorin 3A (Sema 3A). In whole cell lysates, serum withdrawal decreased and CSPGs or Sema 3A increased RhoA activity, but no treatments affected Rac1 activity. In growth cones, serum withdrawal or 8-Br-cAMP increased Rac1 activation and serum withdrawal decreased RhoA activation. Conversely, outgrowth inhibitors decreased Rac1 activity. Additionally, 8-Br-cAMP reversed increases in RhoA activity induced by Sema 3A in whole cell lysates and CSPGs in growth cones. These data suggest that activation of RhoA and Rac1 is differentially regulated in specific cellular regions, perhaps contributing to the complexity of Rho GTPase-mediated axon growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。