The mechanism of perovskite film growth is critical for the final morphology and, thus, the performance of the perovskite solar cell. The nano-roughness of compact TiO(2) (c-TiO(2)) fabricated via the spray pyrolysis method had a significant effect on the perovskite grain size and perovskite solar cell performance in this work. While spray pyrolysis is a low-cost and straightforward deposition technique suitable for large-scale application, it is influenced by a number of parameters, including (i) alcoholic solvent precursor, (ii) spray temperature, and (iii) annealing temperature. Among alcoholic solvents, 2-propanol and 1-butanol showed a smooth surface without any large TiO(2) particles on the surface compared to EtOH. The lowest roughness of the c-TiO(2) layer was obtained at 450 °C with an average perovskite grain size of around 300 nm. Increased annealing temperature has a positive effect on the roughness of TiO(2). The highest efficiency of the solar cell was achieved by using 1-butanol as the solvent. The decrease in the nano roughness of c-TiO(2) promoted larger perovskite grain sizes via a relative decrease in the nucleation rate. Therefore, controlling the spray pyrolysis technique used to deposit the c-TiO(2) layer is a promising route to control the surface nanoroughness of c-TiO(2), which results in an increase in the MAPbI(3) grain size.
Nano-scale smooth surface of the compact-TiO(2) layer via spray pyrolysis for controlling the grain size of the perovskite layer in perovskite solar cells.
阅读:2
作者:Nukunudompanich Methawee, Suzuki Kazuma, Kameda Keisuke, Manzhos Sergei, Ihara Manabu
| 期刊: | RSC Advances | 影响因子: | 4.600 |
| 时间: | 2023 | 起止号: | 2023 Sep 18; 13(40):27686-27695 |
| doi: | 10.1039/d3ra05547g | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
