Since the onset of the COVID-19 pandemic, energy price predictability has worsened. We evaluate the effectiveness of the two machine learning methods of shrinkage and combination on the spot prices of crude oil before and during the COVID-19 epidemic. The results demonstrated that COVID-19 increased economic uncertainty and diminished the predictive capacity of numerous models. Shrinkage methods have always been regarded as having an excellent out-of-sample forecast performance. However, during the COVID period, the combination methods provide more accurate information than the shrinkage methods. The reason is that the outbreak of the epidemic has altered the correlation between specific predictors and crude oil prices, and shrinkage methods are incapable of identifying this change, resulting in the loss of information.
Forecasting crude oil prices in the COVID-19 era: Can machine learn better?
阅读:4
作者:Tian Guangning, Peng Yuchao, Meng Yuhao
| 期刊: | Energy Economics | 影响因子: | 14.200 |
| 时间: | 2023 | 起止号: | 2023 Sep;125:106788 |
| doi: | 10.1016/j.eneco.2023.106788 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
