Protease inhibitor ASP enhances freezing tolerance by inhibiting protein degradation in kumquat

蛋白酶抑制剂 ASP 通过抑制金橘蛋白质降解来增强抗冻性

阅读:6
作者:Hua Yang, Ke-Wei Qiao, Jin-Jing Teng, Jia-Bei Chen, Ying-Li Zhong, Li-Qun Rao, Xing-Yao Xiong, Huang Li

Abstract

Cold acclimation is a complex biological process leading to the development of freezing tolerance in plants. In this study, we demonstrated that cold-induced expression of protease inhibitor FmASP in a Citrus-relative species kumquat [Fortunella margarita (Lour.) Swingle] contributes to its freezing tolerance by minimizing protein degradation. Firstly, we found that only cold-acclimated kumquat plants, despite extensive leaf cellular damage during freezing, were able to resume their normal growth upon stress relief. To dissect the impact of cold acclimation on this anti-freezing performance, we conducted protein abundance assays and quantitative proteomic analysis of kumquat leaves subjected to cold acclimation (4°C), freezing treatment (-10°C) and post-freezing recovery (25°C). FmASP (Against Serine Protease) and several non-specific proteases were identified as differentially expressed proteins induced by cold acclimation and associated with stable protein abundance throughout the course of low-temperature treatment. FmASP was further characterized as a robust inhibitor of multiple proteases. In addition, heterogeneous expression of FmASP in Arabidopsis confirmed its positive role in freezing tolerance. Finally, we proposed a working model of FmASP and illustrated how this extracellular-localized protease inhibitor protects proteins from degradation, thereby maintaining essential cellular function for post-freezing recovery. These findings revealed the important role of protease inhibition in freezing response and provide insights on how this role may help develop new strategies to enhance plant freezing tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。