Thermal Surface Properties, London Dispersive and Polar Surface Energy of Graphene and Carbon Materials Using Inverse Gas Chromatography at Infinite Dilution.

阅读:6
作者:Hamieh, Tayssir
The thermal surface properties of graphenes and carbon materials are of crucial importance in the chemistry of materials, chemical engineering, and many industrial processes. BACKGROUND: The determination of these surface properties is carried out using inverse gas chromatography at infinite dilution, which leads to the retention volume of organic solvents adsorbed on solid surfaces. This experimental and fundamental parameter actually reflects the surface thermodynamic interactions between injected probes and solid substrates. METHODS: The London dispersion equation and the Hamieh thermal model are used to quantify the London dispersive and polar surface energy of graphenes and carbon fibers as well their Lewis acid-base constants by introducing the coupling amphoteric constant of materials. RESULTS: The London dispersive and polar acid-base surface energies, the free energy of adsorption, the polar enthalpy and entropy, and the Lewis acid-base constants of graphenes and carbon materials are determined. CONCLUSIONS: It is shown that graphene exhibited the highest values of London dispersive surface energy, polar surface energy, and Lewis acid-base constants. The highest characteristics of graphene justify its great potentiality and uses in many industrial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。