Infiltrating Myeloid Cells Exert Protumorigenic Actions via Neutrophil Elastase

浸润性髓系细胞通过中性粒细胞弹性蛋白酶发挥致瘤作用

阅读:9
作者:Irina Lerman, Maria de la Luz Garcia-Hernandez, Javier Rangel-Moreno, Luis Chiriboga, Chunliu Pan, Kent L Nastiuk, John J Krolewski, Aritro Sen, Stephen R Hammes

Abstract

Tissue infiltration and elevated peripheral circulation of granulocytic myeloid-derived cells is associated with poor outcomes in prostate cancer and other malignancies. Although myeloid-derived cells have the ability to suppress T-cell function, little is known about the direct impact of these innate cells on prostate tumor growth. Here, it is reported that granulocytic myeloid-derived suppressor cells (MDSC) are the predominant tumor-infiltrating cells in prostate cancer xenografts established in athymic nude mice. MDSCs significantly increased in number in the peripheral circulation as a function of xenograft growth and were successfully depleted in vivo by Gr-1 antibody treatment. Importantly, MDSC depletion significantly decreased xenograft growth. We hypothesized that granulocytic MDSCs might exert their protumorigenic actions in part through neutrophil elastase (ELANE), a serine protease released upon granulocyte activation. Indeed, it was determined that NE is expressed by infiltrating immune cells and is enzymatically active in prostate cancer xenografts and in prostate tumors of prostate-specific Pten-null mice. Importantly, treatment with sivelestat, a small-molecule inhibitor specific for NE, significantly decreased xenograft growth, recapitulating the phenotype of Gr-1 MDSC depletion. Mechanistically, NE activated MAPK signaling and induced MAPK-dependent transcription of the proliferative gene cFOS in prostate cancer cells. Functionally, NE stimulated proliferation, migration, and invasion of prostate cancer cells in vitro IHC on human prostate cancer clinical biopsies revealed coexpression of NE and infiltrating CD33+ MDSCs.Implications: This report suggests that MDSCs and NE are physiologically important mediators of prostate cancer progression and may serve as potential biomarkers and therapeutic targets. Mol Cancer Res; 15(9); 1138-52. ©2017 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。