The influence of a wet environment on the fatigue behaviour of high-strength concrete has become more important in recent years with the expansion of offshore wind energy systems. According to the few investigations documented in the literature, the fatigue resistance of specimens submerged in water is significantly lower compared to that of specimens in dry conditions. However, it is still not clear how the wet environment and the moisture content in concrete influence its fatigue behaviour and which damage mechanisms are involved in the deterioration process. Here the results of a joint project are reported, in which the impact of moisture content in concrete on fatigue deterioration are investigated experimentally and numerically. Aside from the number of cycles to failure, the development of stiffness and acoustic emission (AE) hits are analysed as damage inductors and discussed along with results of microstructural investigations to provide insights into the degradation mechanisms. Subsequently, an efficient numeric modelling approach to water-induced fatigue damage is presented. The results of the fatigue tests show an accelerated degradation behaviour with increasing moisture content of the concrete. Further, it was found that the AE hits of specimens submerged in water occur exclusively close to the minimum stress level in contrast to specimens subjected to dry conditions, which means that additional damage mechanisms are acting with increasing moisture content in the concrete.
Influence of Moisture Content and Wet Environment on the Fatigue Behaviour of High-Strength Concrete.
阅读:3
作者:Abubakar Ali Mohamed, Tomann Christoph, Aldakheel Fadi, Mahlbacher Markus, Noii Nima, Oneschkow Nadja, Drake Karl-Heinz, Lohaus Ludger, Wriggers Peter, Haist Michael
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2022 | 起止号: | 2022 Jan 28; 15(3):1025 |
| doi: | 10.3390/ma15031025 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
