Syncytial phenotype of C-terminally truncated herpes simplex virus type 1 gB is associated with diminished membrane interactions.

阅读:9
作者:Chowdary Tirumala Kumar, Heldwein Ekaterina E
The cytoplasmic domain of glycoprotein B (gB) from herpes simplex virus type 1 (HSV-1) is an important regulator of membrane fusion. C-terminal truncations of the cytoplasmic domain lead to either hyperfusion or fusion-null phenotypes. Currently, neither the structure of the cytoplasmic domain nor its mechanism of fusion regulation is known. Here we show, for the first time, that the full-length cytoplasmic domain of HSV-1 gB associates stably with lipid membranes, preferentially binding to membranes containing anionic head groups. This interaction involves a large increase in helical content. However, the truncated cytoplasmic domains associated with the hyperfusion phenotype show a small increase in helical structure and a diminished association with lipid membranes, whereas the one associated with the fusion-null phenotype shows no increase in helical structure and only a minimal association with lipid membranes. We hypothesize that stable binding to lipid membranes is an important part of the mechanism by which the cytoplasmic domain negatively regulates membrane fusion. Moreover, our experiments with truncated cytoplasmic domains point to two specific regions that are critical for membrane interactions. Taken together, our work provides several important new insights into the architecture of the cytoplasmic domain of HSV-1 gB and its interaction with lipid membranes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。