Elucidation of the effects of 2,5-hexandione as a metabolite of n-hexane on cognitive impairment in leptin-knockout mice (C57BL/6-Lepem1Shwl/Korl).

阅读:4
作者:Nguyen Hai Duc, Jo Won Hee, Cha Jae Ok, Hoang Ngoc Hong Minh, Kim Min-Sun
Exposure to n-hexane and its metabolite 2,5-hexandione (HD) is a well-known cause of neurotoxicity, particularly in the peripheral nervous system. To date, few studies have focused on the neurotoxic effects of HD on cognitive impairment. Exposure to HD and diabetes mellitus can exacerbate neurotoxicity. There are links among HD, diabetes mellitus, and cognitive impairment; however, the specific mechanisms underlying them remain unclear. Therefore, we aimed to elucidate the neurotoxic effects of HD on cognitive impairment in ob/ob (C57BL/6-Lepem1Shwl/Korl) mice. We found that HD induced cognitive impairment by altering the expression of genes (FN1, AGT, ACTA2, MYH11, MKI67, MET, CTGF, and CD44), miRNAs (mmu-miR15a-5p, mmu-miR-17-5p, and mmu-miR-29a-3p), transcription factors (transcription factor AP-2 alpha [TFAP2A], serum response factor [Srf], and paired box gene 4 [PAX4]), and signaling pathways (ERK/CERB, PI3K/AKT, GSK-3β/p-tau/amyloid-β), as well as by causing neuroinflammation (TREM1/DAP12/NF-κB), oxidative stress, and apoptosis. The prevalent use of n-hexane in various industrial applications (for instance, shoe manufacturing, printing inks, paints, and varnishes) suggests that individuals with elevated body weight and glucose levels and those employed in high-risk workplaces have greater probability of cognitive impairment. Therefore, implementing screening strategies for HD-induced cognitive dysfunction is crucial. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s43188-024-00228-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。