A systematic study has been conducted on barbiturate complexes of all five alkali metals, Li-Cs, prepared from metal carbonates or hydroxides in an aqueous solution without other potential ligands present, varying the stoichiometric ratio of metal ion to barbituric acid (BAH). Eight polymeric coordination compounds (two each for Na, K, and Rb and one each for Li and Cs) have been characterised by single-crystal X-ray diffraction. All contain some combination of barbiturate anion BA(-) (necessarily in a 1:1 ratio with the metal cation M(+)), barbituric acid, and water. All organic species and water molecules are coordinated to the metal centres via oxygen atoms as either terminal or bridging ligands. Coordination numbers range from 4 (for the Li complex) to 8 (for the Cs complex). Extensive hydrogen bonding plays a significant role in all the crystal structures, almost all of which include pairs of N-H···O hydrogen bonds linking BA(-) and/or BAH components into ribbons extending in one dimension. Factors influencing the structure adopted by each compound include cation size and reaction stoichiometry as well as hydrogen bonding.
The Sensitivity of Structure to Ionic Radius and Reaction Stoichiometry: A Crystallographic Study of Metal Coordination and Hydrogen Bonding in Barbiturate Complexes of All Five Alkali Metals Li-Cs.
阅读:4
作者:Clegg William, Nichol Gary S
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2024 | 起止号: | 2024 Mar 27; 29(7):1495 |
| doi: | 10.3390/molecules29071495 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
