Regression calibration utilizing biomarkers developed from high-dimensional metabolites.

阅读:2
作者:Zhang Yiwen, Dai Ran, Huang Ying, Prentice Ross L, Zheng Cheng
Addressing systematic measurement errors in self-reported data is a critical challenge in association studies of dietary intake and chronic disease risk. The regression calibration method has been utilized for error correction when an objectively measured biomarker is available; however, biomarkers for only a few dietary components have been developed. This paper proposes to use high-dimensional objective measurements to construct biomarkers for many more dietary components and to estimate the diet disease associations. It also discusses the challenges in variance estimation in high-dimensional regression methods and presents a variety of techniques to address this issue, including cross-validation, degrees-of-freedom corrected estimators, and refitted cross-validation (RCV). Extensive simulation is performed to study the finite sample performance of the proposed estimators. The proposed method is applied to the Women's Health Initiative cohort data to examine the associations between the sodium/potassium intake ratio and the total cardiovascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。