Whole body electronic cigarette exposure system for efficient evaluation of diverse inhalation conditions and products.

阅读:4
作者:Zweier Jay L, Shalaan Mahmoud T, Samouilov Alexandre, Saleh Ibrahim G, El-Mahdy Mohamed A
Objectives: To develop and test a new system for whole body exposure of small animals to support investigation of the biological effects of aerosol generated by electronic cigarette (e-cig) products under diverse inhalation conditions with improved control and monitoring of the e-cig vape exposure and nicotine delivered to the animal's systemic circulation. Methods: A computer-controlled design, with built-in sensors for real time monitoring of O(2), CO(2), relative humidity, and temperature within the exposure chambers and port for measuring total particulate matter (TPM) was developed, constructed and tested. This design accommodates a variety of commercial vaping devices, offers software flexibility to adjust exposure protocols to mimic different users' puffing patterns, enables variable nicotine delivery to the animal's systemic circulation; minimizes travel time and alterations of aerosol quality or quantity by delivering aerosol directly to the exposure chamber, offers local or remote operation of up to six distinct exposure chambers from a single control unit, and can simultaneously test different exposure conditions or products in diverse animal groups, which reduces inter-run variability, saves time, and increases productivity. Results: The time course pattern of TPM concentration during different phases of the exposure cycle was measured. With increased puffing duration or number of exposure cycles, higher TPM exposure and plasma cotinine levels were observed with plasma cotinine levels in the range reported in light or heavy smokers. Conclusion: Overall, this novel, versatile, and durable exposure system facilitates high-throughput evaluation of the relative safety and potential toxicity of a variety of e-cig devices and liquids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。