The L-space and P-space are two essential representations for studying complex networks that contain different clusters. Existing network models can successfully generate networks in L-space, but generating networks in P-space poses significant challenges. In this study, we present an empirical analysis of the distribution of the number of a line's nodes and the properties of the networks generated by these data in P-space. To gain insights into the operational mechanisms of the network of these data, we propose an event-link model that incorporates new nodes and links in P-space based on actual data characteristics using real data from marine and public transportation networks. The entire network consists of a series of events that consist of many nodes, and all nodes in an event are connected in the P-space. We conduct simulation experiments to explore the model's topological features under different parameter conditions, demonstrating that the simulation outcomes are consistent with the theoretical analysis of the model. This model exhibits small-world characteristics, scale-free behavior, and a high clustering coefficient. The event-link model, with its adjustable parameters, effectively generates networks with stable structures that closely resemble the statistical characteristics of real-world networks that share similar growth mechanisms. Moreover, the network's growth and evolution can be flexibly adjusted by modifying the model parameters.
An Event-Link Network Model Based on Representation in P-Space.
阅读:14
作者:Zhang Wenjun, Chen Xiangna, Deng Weibing
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Apr 12; 27(4):419 |
| doi: | 10.3390/e27040419 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
