Many time-series analysis techniques use sliding window approaches or are repeatedly applied over a continuous range of parameters. When combined with a significance test, intrinsic correlations among the pointwise analysis results can make falsely positive significant points appear as continuous patches rather than as isolated points. To account for this effect, we present an areawise significance test that identifies such false-positive patches. For this purpose, we numerically estimate the decorrelation length of the statistic of interest by calculating correlation functions between the analysis results and require an areawise significant point to belong to a patch of pointwise significant points that is larger than this decorrelation length. We apply our areawise test to results from windowed traditional and scale-specific recurrence network analysis in order to identify dynamical anomalies in time series of a non-stationary Rössler system and tree ring width index values from Eastern Canada. Especially, in the palaeoclimate context, the areawise testing approach markedly reduces the number of points that are identified as significant and therefore highlights only the most relevant features in the data. This provides a crucial step towards further establishing recurrence networks as a tool for palaeoclimate data analysis.
Areawise significance tests for windowed recurrence network analysis.
阅读:8
作者:Lekscha Jaqueline, Donner Reik V
| 期刊: | Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences | 影响因子: | 3.000 |
| 时间: | 2019 | 起止号: | 2019 Aug;475(2228):20190161 |
| doi: | 10.1098/rspa.2019.0161 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
