Survival analysis in medical research has witnessed a growing interest in applying deep learning techniques to model complex, high-dimensional, heterogeneous, incomplete, and censored data. Current methods make assumptions about the relations between data that may not be valid in practice. Therefore, we introduce SAVAE (Survival Analysis Variational Autoencoder). SAVAE, based on Variational Autoencoders, contributes significantly to the field by introducing a tailored Evidence Lower BOund formulation, supporting various parametric distributions for covariates and survival time (if the log-likelihood is differentiable). It offers a general method that demonstrates robustness and stability through different experiments. Our proposal effectively estimates time-to-event, accounting for censoring, covariate interactions, and time-varying risk associations. We validate our model in diverse datasets, including genomic, clinical, and demographic tabular data, with varying levels of censoring. This approach demonstrates competitive performance compared to state-of-the-art techniques, as assessed by the Concordance Index and the Integrated Brier Score. SAVAE also offers an interpretable model that parametrically models covariates and time. Moreover, its generative architecture facilitates further applications such as clustering, data imputation, and synthetic patient data generation through latent space inference from survival data. This approach fosters data sharing and collaboration, improving medical research and personalized patient care.
Leveraging the variational Bayes autoencoder for survival analysis.
阅读:3
作者:Apellániz Patricia A, Parras Juan, Zazo Santiago
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Oct 19; 14(1):24567 |
| doi: | 10.1038/s41598-024-76047-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
