Polymers of biological origin have become a topic of interest due to growing concerns about the environmental impact of the disposal of plastics. In recent years, the production of ecobenign microbial polymer polyhydroxyalkanoates (PHAs) using inexpensive and renewable resources has gained significant interest as these compounds are highly biodegradable, biocompatible, and sustainable. This study used leaf endophytic isolate Bacillus cereus RCL 02, obtained from the oil-yielding plant Ricinus communis L., to achieve statistical optimization of culture variables for the enhanced production of PHAs utilizing sugarcane molasses as the sole carbon source. A three-level and four-factor Box-Behnken design of response surface methodology was implemented to optimize the process variables, namely molasses (carbon substrate), ammonium sulfate (nitrogen source), initial pH, and incubation period, for improved biomass formation and PHA production. The highest growth (14.8 g/l) and PHA production (85.2%, dry cell weight) by the isolate were observed with 47 g/l molasses, 3 g/l ammonium sulfate, an initial pH of 6.7, and 62 h of incubation. Statistical optimization of the process allowed achieving a 1.6-fold increase in the PHA yield (7.8-12.6 g/l) compared with the conventional single-factor system of analysis. The biopolymer thus produced was confirmed as a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB-co-3HV)] using (1)H nuclear magnetic resonance spectroscopic analysis and was found to contain 7.8 mol% 3-hydroxyvalerate. These findings clearly indicate the efficacy of the B. cereus RCL 02 isolate in the biotransformation of raw sugarcane molasses to P(3HV-co-3HV), without the need for supplementation with high-cost precursors.
Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by endophytic Bacillus cereus RCL 02 utilizing sugarcane molasses as sole source of carbon: a statistical optimization approach.
阅读:3
作者:Das Rituparna, Pal Arundhati, Paul Amal K
| 期刊: | Biotechnologia | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Sep 29; 103(3):283-300 |
| doi: | 10.5114/bta.2022.118671 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
