Sustainable Solutions for Producing Advanced Biopolymer Membranes-From Net-Zero Technology to Zero Waste.

阅读:4
作者:Rezić MeÅ¡trović Iva, Somogyi Å koc Maja, Dragun Donna Danijela, Glagolić Petra, MeÅ¡trović Ernest
The increasing accumulation of polymer waste presents a significant environmental challenge and a critical opportunity for the development of circular and sustainable membranes. The answer to this complex topic requires an integral approach covering different aspects of the problem. This paper, therefore, explores innovative approaches for the chemical recycling of polymer waste into value-added products, with a specific emphasis on the production of advanced biopolymer membranes. By converting discarded materials into functional polymers through depolymerization and chemical modification processes, new pathways are emerging for the fabrication of high-performance membranes used in filtration, biomedical applications, and energy systems. Among these, electrospinning has gained prominence as a versatile and scalable technique for producing nanostructured membranes with tailored properties. As a key case study presented, the focus was on the optimization of electrospinning parameters, including solvents, polymer concentration, voltage, and flow rate, for the investigation of membranes derived from recycled materials to achieve net-zero technology. Moreover, the environmental benefits of this approach are discussed within a zero-waste and net-zero carbon framework, emphasizing the integration of life cycle assessment to evaluate sustainability metrics. This paper underscores the potential of polymer waste as a feedstock for circular membrane technologies and provides a roadmap for future innovations in waste-to-resource strategies. The results of the demonstrated case example clearly demonstrate how the effects of processing conditions on the production of fine-tuned biodegradable membranes with controlled porosity influenced membrane properties, including mechanical strength and surface functionality, for the desired suppression of the coffee-ring effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。