Hypothalamic neurons that co-express agouti-related protein (AgRP), neuropeptideâY and γ-aminobutyric acid (GABA) are known to promote feeding and weight gain by integration of various nutritional, hormonal, and neuronal signals. Ablation of these neurons in mice leads to cessation of feeding that is accompanied by activation of Fos in most regions where they project. Previous experiments have indicated that the ensuing starvation is due to aberrant activation of the parabrachial nucleus (PBN) and it could be prevented by facilitating GABA(A) receptor signalling in the PBN within a critical adaptation period. We speculated that loss of GABA signalling from AgRP-expressing neurons (AgRP neurons) within the PBN results in unopposed excitation of the PBN, which in turn inhibits feeding. However, the source of the excitatory inputs to the PBN was unknown. Here we show that glutamatergic neurons in the nucleus tractus solitarius (NTS) and caudal serotonergic neurons control the excitability of PBN neurons and inhibit feeding. Blockade of serotonin (5-HT(3)) receptor signalling in the NTS by either the chronic administration of ondansetron or the genetic inactivation of Tph2 in caudal serotonergic neurons that project to the NTS protects against starvation when AgRP neurons are ablated. Likewise, genetic inactivation of glutamatergic signalling by the NTS onto N-methyl D-aspartate-type glutamate receptors in the PBN prevents starvation. We also show that suppressing glutamatergic output of the PBN reinstates normal appetite after AgRP neuron ablation, whereas it promotes weight gain without AgRP neuron ablation. Thus we identify the PBN as a hub that integrates signals from several brain regions to bidirectionally modulate feeding and body weight.
Deciphering a neuronal circuit that mediates appetite.
阅读:4
作者:Wu Qi, Clark Michael S, Palmiter Richard D
| 期刊: | Nature | 影响因子: | 48.500 |
| 时间: | 2012 | 起止号: | 2012 Mar 14; 483(7391):594-7 |
| doi: | 10.1038/nature10899 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
