Single-cell transcriptomics has uncovered the enormous heterogeneity of cell types that compose each region of the mammalian brain, but describing how such diverse types connect to form functional circuits has remained challenging. Current methods for measuring the probability and strength of cell-type specific connectivity motifs principally rely on low-throughput whole-cell recording approaches. The recent development of optical tools for perturbing and observing neural circuit activity, now notably including genetically encoded voltage indicators, presents an exciting opportunity to employ optical methods to greatly increase the throughput with which circuit connectivity can be mapped physiologically. At the same time, advances in spatial transcriptomics now enable the identification of cell types in situ based on their unique gene expression signatures. Here, we demonstrate how long-range synaptic connectivity can be assayed optically with high sensitivity, high throughput, and cell-type specificity. We apply this approach in the motor cortex to examine cell-type-specific synaptic innervation patterns of long-range thalamic and contralateral input onto more than 1000 motor cortical neurons. We find that even cell types occupying the same cortical lamina receive vastly different levels of synaptic input, a finding which was previously not possible to uncover using lower-throughput approaches that can only describe the connectivity of broad cell types.
A scalable, all-optical method for mapping synaptic connectivity with cell-type specificity.
阅读:3
作者:Moya Maria V, Cunningham William J, Vincent Jack P, Wang Tim, Economo Michael N
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 25 |
| doi: | 10.1101/2025.06.25.661552 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
