The Evolution of Insulation Performance of Fiber-Reinforced Silica Aerogel after High-Temperature Treatment.

阅读:3
作者:Gao Rui, Zhou Zhangjian, Zhang Hongbo, Zhang Xiaoge, Wu Yuming
Fiber-reinforced silica aerogel blankets (FRABs) are an important high-temperature thermal insulation material for industry applications that have emerged in recent years. In order to better understand the performance evolution of FRABs at high temperatures, the effect of heat treatment at different temperatures on the performance of FRABs as well as their base material, hydrophobic silica aerogel powder and glass wool, was investigated. The property evolution of the hydrophobic silica aerogel powder showed two stages with an increase in thermal treatment temperatures. The skeleton structure of the aerogel remained unchanged, but the residual organic chemicals, such as hydrophobic groups, were decomposed when the heat treatment temperature was lower than 400 °C. Above 400 °C, the skeleton began to shrink with the increase in temperature, which led to an increase in thermal conductivity. The structure and room-temperature thermal conductivity of the glass wool blanket were less affected by a heat treatment temperature under 600 °C. Therefore, the performance degradation of FRABs at high temperatures is mainly due to the change in the aerogel powder. The insulation performance of the glass wool and FRAB at high temperatures was studied using a heating table which was designed to simulate working conditions. The energy savings of using FRABs instead of glass fiber were calculated and are discussed here.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。