We have used resonance Raman spectroscopy to probe the heme environment of a recently discovered NOS from the pathogenic bacterium Staphylococcus aureus, named SANOS. We detect two forms of the CO complex in the absence of L-arginine, with nu(Fe-CO) at 482 and 497 cm(-1) and nu(C-O) at 1949 and 1930 cm(-1), respectively. Similarly to mammalian NOS, the binding of L-arginine to SANOS caused the formation of a single CO complex with nu(Fe-CO) and nu(C-O) frequencies at 504 and 1,917 cm(-1), respectively, indicating that L-arginine induced an electrostatic/steric effect on the CO molecule. The addition of pterins to CO-bound SANOS modified the resonance Raman spectra only when they were added in combination with L-arginine. We found that (6R) 5,6,7,8 tetra-hydro-L-biopterin and tetrahydrofolate were not required for the stability of the reduced protein, which is 5-coordinate, and of the CO complex, which does not change with time to a form with a Soret band at 420 nm that is indicative of a change of the heme proximal coordination. Since SANOS is stable in the absence of added pterin, it suggests that the role of the pterin cofactor in the bacterial NOS may be limited to electron/proton transfer required for catalysis and may not involve maintaining the structural integrity of the protein as is the case for mammalian NOS.
Stability of the heme environment of the nitric oxide synthase from Staphylococcus aureus in the absence of pterin cofactor.
阅读:5
作者:Chartier François J M, Couture Manon
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2004 | 起止号: | 2004 Sep;87(3):1939-50 |
| doi: | 10.1529/biophysj.104.042119 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
