Modeling of carbon dioxide absorption into aqueous alkanolamines using machine learning and response surface methodology.

阅读:7
作者:Masoumi Hadiseh, Imani Ali, Aslani Azam, Ghaemi Ahad
This research focuses on modeling CO(2) absorption into alkanolamine solvents using multilayer perceptron (MLP), radial basis function network (RBF), Support Vector Machine (SVM), networks, and response surface methodology (RSM). The parameters, including solvent density, mass fraction, temperature, liquid phase equilibrium constant, CO(2) loading, and partial pressure of CO(2), were used as input factors in the models. In addition, the value of CO(2) mass flux was considered as output in the models. Trainlm, trainbr, and trainscg algorithms trained the networks. The results showed that the best number of neurons for MLP with one layer is 16; with two layers, 5 neurons in the first layer and 12 neurons in the second layer; and with three layers, 9 neurons in the first layer, 5 neurons in the second layer, and 1 neuron in the third layer. The best spread in RBF was found to be 2.202 for optimal network performance. Furthermore, statistical data analysis revealed that the trainlm function performs best. The coefficients of determination for RSM, MLP, RBF, and SVM for optimized structures are obtained at 0.9802, 0.9996, 0.9940, and 0.8946, respectively. The results demonstrate that MLP and RBF networks can model CO(2) absorption using the trainlm, trainbr, and trainscg algorithms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。