In this paper, an accurate distribution of stress as well as corresponding factors of stress concentration determination around a spherical cavity, which is considered as embedded in a cylinder exposed to the internal pressure only, is presented. This approach was applied at three main meridians of the porosity by combining the Eshelby's equivalent inclusion method with Mura and Chang's methodology employing the jump condition across the interface of the cavity and matrix, respectively. The distribution of stresses around the spherical flaw and their concentration factors were formulated in the form of newly formulated analytical relations involving the geometric ratio of the cylinder, such as external radius and thickness, the angle around the cavity, depth of the porosity, as well as the material Poisson ratio. Subsequently, a comparison of the analytical results and the numerical simulation results is applied to validate obtained results. The results show that the stress concentration factors (SCFs) are not constant for an incorporated flaw and vary with both the porosity depth and the Poisson ratio, regardless of whether the cylinder geometric ratio is thin or thick.
Factors of Stress Concentration around Spherical Cavity Embedded in Cylinder Subjected to Internal Pressure.
阅读:12
作者:Abdelghani Mechri, Tewfik Ghomari, Witek Maciej, Djahida Djouadi
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2021 | 起止号: | 2021 Jun 3; 14(11):3057 |
| doi: | 10.3390/ma14113057 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
