Spectroscopic and electronic structure studies of intermediate X in ribonucleotide reductase R2 and two variants: a description of the FeIV-oxo bond in the FeIII-O-FeIV dimer.

阅读:12
作者:Mitić Natasa, Clay Michael D, Saleh Lana, Bollinger J Martin Jr, Solomon Edward I
Spectroscopic and electronic structure studies of the class I Escherichia coli ribonucleotide reductase (RNR) intermediate X and three computationally derived model complexes are presented, compared, and evaluated to determine the electronic and geometric structure of the FeIII-FeIV active site of intermediate X. Rapid freeze-quench (RFQ) EPR, absorption, and MCD were used to trap intermediate X in R2 wild-type (WT) and two variants, W48A and Y122F/Y356F. RFQ-EPR spin quantitation was used to determine the relative contributions of intermediate X and radicals present, while RFQ-MCD was used to specifically probe the FeIII/FeIV active site, which displayed three FeIV d-d transitions between 16,700 and 22,600 cm(-1), two FeIV d-d spin-flip transitions between 23,500 and 24,300 cm(-1), and five oxo to FeIV and FeIII charge transfer (CT) transitions between 25,000 and 32,000 cm(-1). The FeIV d-d transitions were perturbed in the two variants, confirming that all three d-d transitions derive from the d-pi manifold. Furthermore, the FeIV d-pi splittings in the WT are too large to correlate with a bis-mu-oxo structure. The assignment of the FeIV d-d transitions in WT intermediate X best correlates with a bridged mu-oxo/mu-hydroxo [FeIII(mu-O)(mu-OH)FeIV] structure. The mu-oxo/mu-hydroxo core structure provides an important sigma/pi superexchange pathway, which is not present in the bis-mu-oxo structure, to promote facile electron transfer from Y122 to the remote FeIV through the bent oxo bridge, thereby generating the tyrosyl radical for catalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。