Improvements in foveal acuity for moving targets have been interpreted as evidence for the ability of the visual system to combine information over space and time, in order to reconstruct the image at a higher resolution (super-resolution). Here, we directly test whether this occurs in the peripheral visual field and discuss its potential for improving functional capacity in ocular disease. The effect of motion on visual acuity was first compared under conditions in which performance was limited either by natural undersampling in the retinal periphery or by the presence of overlaid masks with opaque elements to simulate retinal loss. To equate the information content of moving and static sequences, we next manipulated the dynamic properties of the masks. Finally, we determined the dependence of motion-related improvements on the object of motion (target or mask) and its trajectory (smooth or jittered). Motion improved visual acuity for masked but not unmasked peripheral targets. Equating the information content of moving and static conditions removed some but not all of this benefit. Residual motion-related improvements were largest in conditions in which the target moved along a consistent and predictable path. Our results show that motion can improve peripheral acuity in situations in which performance is limited by abnormal undersampling. These findings are consistent with the operation of a super-resolution system and could have important implications for any pathology that alters the regular sampling properties of the retinal mosaic.
Motion-based super-resolution in the peripheral visual field.
阅读:4
作者:Patrick Jonathan A, Roach Neil W, McGraw Paul V
| 期刊: | Journal of Vision | 影响因子: | 2.300 |
| 时间: | 2017 | 起止号: | 2017 Aug 1; 17(9):15 |
| doi: | 10.1167/17.9.15 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
