Multifunctional effect of flavonoids from Millettia brandisiana against Alzheimer's disease pathogenesis.

阅读:4
作者:Arsito Puguh Novi, Waiwut Pornthip, Yenjai Chavi, Arthan Supakorn, Monthakantirat Orawan, Nualkaew Natsajee, Takomthong Pitchayakarn, Boonyarat Chantana
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and neuronal death. Fifteen flavonoids from Millettia brandisiana were evaluated for the multifunctional effect against AD pathogenesis, including butyrylcholine esterase (BuChE) inhibition, anti-amyloid beta (Aβ) aggregation and neuroprotection against hydrogen peroxide (H(2)O(2)) toxicity in differentiated human neuroblastoma SH-SY5Y cell. To understand the mechanism and structure-activity relationship, binding interactions between flavonoids and the BuChE and Aβ were investigated in silico. Furthermore, drug-likeness properties and ADMET parameters were evaluated in silico using SwissADME and pKCSM tools. All flavonoids exhibit a good drug-likeness profile. Six flavonoids have potency in BuChE inhibition, and four flavonoids show potency in anti-Aβ aggregation. Flavonoids with the 6″,6″-dimethylchromeno- [2″,3″:7,8]-flavone structure show a favorable multifunctional effect. In silico analysis showed that flavonoids can bind in various positions to the catalytic triad, anionic site, and acyl pocket. In Aβ(1-42), potential flavonoids can attach to the central hydrophobic region and the C terminal hydrophobic and interfere with Aβ interchain hydrogen binding. When compared together, it can inhibit multifunctional action with a favorable ADMET parameter and drug-likeness profile. In addition, candidine can prevent neuronal damage in differentiated SH-SY5Y neuroblastoma cells induced by H(2)O(2) in a dose-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。