Intelligent Epileptic Seizure Detection and Classification Model Using Optimal Deep Canonical Sparse Autoencoder.

阅读:4
作者:Hilal Anwer Mustafa, Albraikan Amani Abdulrahman, Dhahbi Sami, Nour Mohamed K, Mohamed Abdullah, Motwakel Abdelwahed, Zamani Abu Sarwar, Rizwanullah Mohammed
Epileptic seizures are a chronic and persistent neurological illness that mainly affects the human brain. Electroencephalogram (EEG) is considered an effective tool among neurologists to detect various brain disorders, including epilepsy, owing to its advantages, such as its low cost, simplicity, and availability. In order to reduce the severity of epileptic seizures, it is necessary to design effective techniques to identify the disease at an earlier stage. Since the traditional way of diagnosing epileptic seizures is laborious and time-consuming, automated tools using machine learning (ML) and deep learning (DL) models may be useful. This paper presents an intelligent deep canonical sparse autoencoder-based epileptic seizure detection and classification (DCSAE-ESDC) model using EEG signals. The proposed DCSAE-ESDC technique involves two major processes, namely, feature selection and classification. The DCSAE-ESDC technique designs a novel coyote optimization algorithm (COA)-based feature selection technique for the optimal selection of feature subsets. Moreover, the DCSAE-based classifier is derived for the detection and classification of different kinds of epileptic seizures. Finally, the parameter tuning of the DSCAE model takes place via the krill herd algorithm (KHA). The design of the COA-based feature selection and KHA-based parameter tuning shows the novelty of the work. For examining the enhanced classification performance of the DCSAE-ESDC technique, a detailed experimental analysis was conducted using a benchmark epileptic seizure dataset. The comparative results analysis portrayed the better performance of the DCSAE-ESDC technique over existing techniques, with maximum accuracy of 98.67% and 98.73% under binary and multi-classification, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。