Simulation and analysis of non-navigational errors in robot-assisted pedicle Kirschner wire placement surgery.

阅读:5
作者:Yang Yongkang, Jia Yishi, Liu Chang, Li Liang, Wang Boyao
BACKGROUND: Surgical errors of orthopedics robotic are influenced by a multitude of factors. This study aims to investigate the impact of non-navigational errors on the accuracy of pedicle screw placement in orthopedic surgery. METHODS: Initially, a robot-assisted Kirschner wire (K-wire) placement simulation system was constructed, comprising a universal arm, wide-angle cameras, microscope cameras, and a vertebral base. Utilizing this system, we conducted a systematic analysis of the effects of four factors on non-navigational errors: operator habits, guide-to-bone surface distance, robotic arm stiffness, and vertebral fixation stiffness.We investigated two distinct operator habits: Habit 1 involves first positioning the K-wire against the bone surface through the guide and then inserting it using a bone drill; Habit 2 involves clamping the K-wire onto the bone drill and then inserting it together. Based on the control variable method, we designed precision measurement experiments for K-wire placement under different factors, forming 26 variable combinations to investigate the K-wire placement errors under each factor and their proportions in the overall error. RESULTS: A total of 933 K-wire placements were performed in this study. The average deviation under Habit 2 conditions was 0.51 mm, compared to 0.13 mm under Habit 1 conditions; the average deviation was 0.36 mm when the guide-to-bone surface distance was 5 cm, and 0.28 mm when the distance was 1 cm; the average deviation was 0.36 mm under the 600 mm robotic arm condition, and 0.24 mm under the 500 mm robotic arm condition; the average deviation was 0.37 mm in the Plaster-Fixed Vertebra Group, and 0.85 mm in the Silicone-Fixed Vertebra Group. CONCLUSIONS: Operator habits and vertebral fixation stiffness are the primary factors influencing non-navigational errors, while guide-to-bone surface distance and robotic arm stiffness are secondary factors. This study recommends adopting Habit 1 in clinical surgeries, minimizing the guide-to-bone surface distance, and enhancing the stiffness of the robotic arm and vertebral fixation to reduce non-navigational errors and improve the accuracy of robot-assisted pedicle screw placement.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。