Polyubiquitination of misfolded proteins, especially K63-linked polyubiquitination, is thought to be associated with the formation of inclusion bodies. However, it is not well explored whether appropriate editing of the different types of ubiquitin linkages by deubiquitinating enzymes (DUBs) affects the dynamics of inclusion bodies. In this study, we report that a specific DUB, ataxin-3, is required for the efficient recruitment of the neurodegenerative disease-associated protein copper-zinc superoxide dismutase (SOD1) to aggresomes. The overexpression of ataxin-3 promotes mutant SOD1 aggresome formation by trimming K63-linked polyubiquitin chains. Moreover, knockdown of ataxin-3 decreases mutant SOD1 aggresome formation and increases cell death induced by mutant SOD1. Thus, our data suggest that the sequestration of misfolded SOD1 into aggresomes, which is driven by ataxin-3, plays an important role in attenuating protein misfolding-induced cell toxicity.
Ataxin-3 regulates aggresome formation of copper-zinc superoxide dismutase (SOD1) by editing K63-linked polyubiquitin chains.
阅读:9
作者:Wang Hongfeng, Ying Zheng, Wang Guanghui
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2012 | 起止号: | 2012 Aug 17; 287(34):28576-85 |
| doi: | 10.1074/jbc.M111.299990 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
