Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these challenges, our study introduces a modular AI-powered framework that integrates an audio-based disease classification model with simulated molecular biomarker profiles to evaluate the feasibility of future multimodal diagnostic extensions, alongside a synthetic-data-driven prescription recommendation engine. The disease classification model analyzes respiratory sound recordings and accurately distinguishes among eight clinical classes: bronchiectasis, pneumonia, upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis, and healthy respiratory state. The proposed model achieved a classification accuracy of 99.99% on a holdout test set, including 94.2% accuracy on pediatric samples. In parallel, the prescription module provides individualized treatment recommendations comprising drug, dosage, and frequency trained on a carefully constructed synthetic dataset designed to emulate real-world prescribing logic.The model achieved over 99% accuracy in medication prediction tasks, outperforming baseline models such as those discussed in research. Minimal misclassification in the confusion matrix and strong clinician agreement on 200 prescriptions (Cohen's κ = 0.91 [0.87-0.94] for drug selection, 0.78 [0.74-0.81] for dosage, 0.96 [0.93-0.98] for frequency) further affirm the system's reliability. Adjusted clinician disagreement rates were 2.7% (drug), 6.4% (dosage), and 1.5% (frequency). SHAP analysis identified age and smoking as key predictors, enhancing model explainability. Dosage accuracy was 91.3%, and most disagreements occurred in renal-impaired and pediatric cases. However, our study is presented strictly as a proof-of-concept. The use of synthetic data and the absence of access to real patient records constitute key limitations. A trialed clinical deployment was conducted under a controlled environment with a positive rate of satisfaction from experts and users, but the proposed system must undergo extensive validation with de-identified electronic medical records (EMRs) and regulatory scrutiny before it can be considered for practical application. Nonetheless, the findings offer a promising foundation for the future development of clinically viable AI-assisted respiratory care tools.
A Multimodal AI Framework for Automated Multiclass Lung Disease Diagnosis from Respiratory Sounds with Simulated Biomarker Fusion and Personalized Medication Recommendation.
阅读:7
作者:Abdullah, Fatima Zulaikha, Abdullah Jawad, RodrÃguez José Luis Oropeza, Sidorov Grigori
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 24; 26(15):7135 |
| doi: | 10.3390/ijms26157135 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
