Gold nanoparticles (Au NPs) hold unique optical and electronic properties due to their surface plasmon resonance. The size, shape, and surface chemistry of Au NPs are key parameters for altering their optical properties to fine-tune Au NPs for specific applications. We report a size-controlled synthesis of citrate-stabilized Au NPs via the Turkevich method, followed by their growth through a semi-continuous seed-mediated approach. Au NPs of up to 53 nm were synthesized by controlled addition of chloroauric acid (HAuClâ) to pre-prepared citrate stabilized Au NP seeds. Our approach leverages the residual sodium citrate from the Turkevich reaction to reduce HAuClâ during seed-mediated growth of Au NPs. Notably, we observed that a boiling temperature, as opposed to 70 °C, provided better control over nanoparticle size and morphology. Our method addresses several challenges associated with seed-mediated growth by yielding relatively spherical, monodisperse, citrate-stabilized, water-dispersible Au NPs in a single growth step, without sacrificing yield. Furthermore, a kinetics study revealed a continuous increase in particle diameter over the reaction period, hinting at the continuous and uniform growth of Au NPs.
Controlled growth of citrate-stabilized gold nanoparticles using a semi-continuous seed-mediated route.
阅读:12
作者:Bilal Muhammad, Bandyopadhyay Sulalit
| 期刊: | Discover Nano | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Feb 17; 20(1):39 |
| doi: | 10.1186/s11671-025-04189-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
