This paper investigates a specific case of one of the most popular fluid dynamic simulations, the incompressible flow around an airfoil (NACA 0012 here) at a high Reynolds number (6 Ã 106). OpenFOAM software was used to study the effect of domain size and four common choices of boundary conditions on airfoil lift, drag, surface friction, and pressure. We also examine the relation between boundary conditions and the velocity, pressure, and vorticity distributions throughout the domain. In addition to the common boundary conditions, we implement the "point vortex" boundary condition that was introduced many years ago but is now rarely used. We also applied the point vortex condition for the outlet pressure instead of using the traditional Neumann condition. With the airfoil generating significant lift at incidence angles of 5â, 10â, and 14â, we confirm a previous finding that the boundary conditions combine with domain size to produce an induced (pressure) drag. The change in the pressure drag with domain size is significant for the commonly-used boundary conditions but is much smaller for the point vortex alternative. The point vortex boundary condition increases the execution time, but this is more than offset by the reduction in domain size needed to achieve a specified accuracy in the lift and drag. This study also estimates the error in total drag and lift due to domain size and shows it can be almost eliminated using the point vortex boundary condition. We also used the impulse form of the momentum equations to study the relation between drag and lift and spurious vorticity, which is generated as a result of using non-exact boundary conditions. These equations reveal that the spurious vorticity throughout the domain is associated with cancelling circulation around the domain boundaries.
Some effects of domain size and boundary conditions on the accuracy of airfoil simulations.
阅读:5
作者:Golmirzaee Narges, Wood David H
| 期刊: | Advances in Aerodynamics | 影响因子: | 2.300 |
| 时间: | 2024 | 起止号: | 2024;6(1):7 |
| doi: | 10.1186/s42774-023-00163-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
