Composite structures undergo a gradual damage evolution from initial inter-fibre cracks to extended damage up to failure. However, most composites could remain in service despite the existence of damage. Prerequisite for a service extension is a reliable and component-specific damage identification. Therefore, a vibration-based damage identification method is presented that takes into consideration the gradual damage behaviour and the resulting changes of the structural dynamic behaviour of composite rotors. These changes are transformed into a sequence of distinct states and used as an input database for three diagnostic models, based on the Kullback-Leibler divergence, the two-sample Kolmogorov-Smirnov test and a statistical hidden Markov model. To identify the present damage state based on the damage-dependent modal properties, a sequence-based diagnostic system has been developed, which estimates the similarity between the present unclassified sequence and obtained sequences of damage-dependent vibration responses. The diagnostic performance evaluation delivers promising results for the further development of the proposed diagnostic method.
A Sequence-Based Damage Identification Method for Composite Rotors by Applying the Kullback-Leibler Divergence, a Two-Sample Kolmogorov-Smirnov Test and a Statistical Hidden Markov Model.
阅读:3
作者:Filippatos Angelos, Langkamp Albert, Kostka Pawel, Gude Maik
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2019 | 起止号: | 2019 Jul 15; 21(7):690 |
| doi: | 10.3390/e21070690 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
