Interest in phthalate detection of foods and other environmental media has grown rapidly in the past decade. However, current analytical and separation techniques are often limited in the breadth of chemistry targeted, most often targeting less than 15 compounds. Challenges to successful methods with this compound group include chromatographic resolution, quantitation across diverse concentration ranges, and sample preparation due to the chemical similarity of these compounds. This project describes the development of a selective ion monitoring gas chromatography mass spectrometry method for quantitation of 29 phthalates and two phthalate replacements along with considerations for quantitation, sample cleanup, and standard storage. Our range of phthalates includes less-studied ones like bis(2-propylheptyl), diundecyl, didecyl, and ditridecyl. Analytical performance included limits of detection ranging from 17-230Â ng/mL and robust reproducibility with relative percent differences below 8% for complex matrices. Two calibration ranges were used to accommodate the wide dynamic range of phthalate concentrations observed in real samples. Method application was demonstrated with edible oils (n = 12) and silicone wristbands (n = 18), representing dietary and personal exposure pathways. Sample preparation strategies, including solid phase extraction were evaluated to mitigate matrix interferences. In addition, compound storage stability was assessed over 133 days to inform best practices for standard preparation and handling. The finalized method demonstrates the uniquely large compound ranges for some phthalates and the importance of analyzing a wide variety of these compounds, making it a valuable foundation for comprehensive environmental monitoring of phthalates and their alternatives.
Targeted Gas Chromatography-Mass Spectrometry Analysis of 31 Phthalates and Replacements: Method Optimization and Application to Edible Oils and Silicone Wristbands.
阅读:6
作者:Adams Kaley T, Haggerty Caoilinn, Scott Richard P, O'Connell Steven, Anderson Kim A
| 期刊: | Journal of Separation Science | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Jul;48(7):e70227 |
| doi: | 10.1002/jssc.70227 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
