Plasticized lithium-ion-based-conducting polymer blend electrolytes based on poly(vinyl alcohol) (PVA):chitosan (CS) polymer was prepared using a solution cast technique. The conductivity of the polymer electrolyte system was found to be 8.457 à 10(-4) S/cm, a critical factor for electrochemical device applications. It is indicated that the number density (n), diffusion coefficient (D), and mobility (μ) of ions are increased with the concentration of glycerol. High values of dielectric constant and dielectric loss were observed at low frequency region. A correlation was found between the dielectric constant and DC conductivity. The achieved transference number of ions (t(ion)) and electrons (t(e)) for the highest conducting plasticized sample were determined to be 0.989 and 0.011, respectively. The electrochemical stability for the highest conducting sample was 1.94 V, indicated by linear sweep voltammetry (LSV). The cyclic voltammetry (CV) response displayed no redox reaction peaks through its entire potential range. Through the constructing electric double-layer capacitor, the energy storage capacity of the highest conducting sample was investigated. All decisive parameters of the EDLC were determined. At the first cycle, the specific capacitance, internal resistance, energy density, and power density were found to be 130 F/g, 80 Ω, 14.5 Wh/kg, and 1100 W/kg, respectively.
Energy Storage Behavior of Lithium-Ion Conducting poly(vinyl alcohol) (PVA): Chitosan(CS)-Based Polymer Blend Electrolyte Membranes: Preparation, Equivalent Circuit Modeling, Ion Transport Parameters, and Dielectric Properties.
阅读:3
作者:Brza Mohamad, Aziz Shujahadeen B, Raza Saeed Salah, Hamsan Muhamad H, Majid Siti Rohana, Abdulwahid Rebar T, Kadir Mohd F Z, Abdullah Ranjdar M
| 期刊: | Membranes | 影响因子: | 3.600 |
| 时间: | 2020 | 起止号: | 2020 Nov 30; 10(12):381 |
| doi: | 10.3390/membranes10120381 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
