A Novel Method Based on Multi-Island Genetic Algorithm Improved Variational Mode Decomposition and Multi-Features for Fault Diagnosis of Rolling Bearing.

阅读:11
作者:Liang Tao, Lu Hao
Aiming at the problem that it is difficult to extract fault features from the nonlinear and non-stationary vibration signals of wind turbine rolling bearings, which leads to the low diagnosis and recognition rate, a feature extraction method based on multi-island genetic algorithm (MIGA) improved variational mode decomposition (VMD) and multi-features is proposed. The decomposition effect of the VMD method is limited by the number of decompositions and the selection of penalty factors. This paper uses MIGA to optimize the parameters. The improved VMD method is used to decompose the vibration signal into a number of intrinsic mode functions (IMF), and a group of components containing the most information is selected through the Holder coefficient. For these components, multi-features based on Renyi entropy feature, singular value feature, and Hjorth parameter feature are extracted as the final feature vector, which is input to the classifier to realize the fault diagnosis of rolling bearing. The experimental results prove that the proposed method can more effectively extract the fault characteristics of rolling bearings. The fault diagnosis model based on this method can accurately identify bearing signals of 16 different fault types, severity, and damage points.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。