The nnU-Net based method for automatic segmenting fetal brain tissues.

阅读:5
作者:Peng Ying, Xu Yandi, Wang Mingzhao, Zhang Huiquan, Xie Juanying
The magnetic resonance (MR) images of fetuses make it possible for doctors to detect out pathological fetal brains in early stages. Brain tissue segmentation is prerequisite for making brain morphology and volume analyses. nnU-Net is an automatic segmentation method based on deep learning. It can adaptively configure itself, so as to adapt to a specific task via preprocessing, network architecture, training, and post-processing. Therefore, we adapt nnU-Net to segment seven types of fetal brain tissues, including external cerebrospinal fluid, gray matter, white matter, ventricle, cerebellum, deep gray matter, and brainstem. With regard to the characteristics of the FeTA 2021 data, some adjustments are made to the original nnU-Net, so that it can segment seven types of fetal brain tissues precisely as far as possible. The average segmentation results on FeTA 2021 training data demonstrate that our advanced nnU-Net is superior to the peers including SegNet, CoTr, AC U-Net and ResUnet. Its average segmentation results are 0.842, 11.759 and 0.957 in terms of Dice, HD95 and VS criteria. Moreover, the experimental results on FeTA 2021 test data further demonstrate that our advanced nnU-Net has obtained good segmentation performance of 0.774, 14.699 and 0.875 in terms of Dice, HD95 and VS, ranked the third in FeTA 2021 challenge. Our advanced nnU-Net realized the task for segmenting the fetal brain tissues using MR images of different gestational ages, which can help doctors to make correct and seasonable diagnoses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。