Enhancing gait recognition by multimodal fusion of mobilenetv1 and xception features via PCA for OaA-SVM classification.

阅读:4
作者:Pundir Akash, Sharma Manmohan, Pundir Ankita, Saini Dipen, Ouahada Khmaies, Bharany Salil, Rehman Ateeq Ur, Hamam Habib
Gait recognition has become an increasingly promising area of research in the search for noninvasive and effective methods of person identification. Its potential applications in security systems and medical diagnosis make it an exciting field with wide-ranging implications. However, precisely recognizing and assessing gait patterns is difficult, particularly in changing situations or from multiple perspectives. In this study, we utilized the widely used CASIA-B dataset to observe the performance of our proposed gait recognition model, with the aim of addressing some of the existing limitations in this field. Fifty individuals are randomly selected from the dataset, and the resulting data are split evenly for training and testing purposes. We begin by excerpting features from gait photos using two well-known deep learning networks, MobileNetV1 and Xception. We then combined these features and reduced their dimensionality via principal component analysis (PCA) to improve the model's performance. We subsequently assessed the model using two distinct classifiers: a random forest and a one against all support vector machine (OaA-SVM). The findings indicate that the OaA-SVM classifier manifests superior performance compared to the others, with a mean accuracy of 98.77% over eleven different viewing angles. This study is conducive to the development of effective gait recognition algorithms that can be applied to heighten people's security and promote their well-being.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。