On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation.

阅读:7
作者:Lorencin Ivan, Baressi Å egota Sandi, Anđelić Nikola, Mrzljak Vedran, Ćabov Tomislav, Å panjol Josip, Car Zlatan
Urinary bladder cancer is one of the most common urinary tract cancers. Standard diagnosis procedure can be invasive and time-consuming. For these reasons, procedure called optical biopsy is introduced. This procedure allows in-vivo evaluation of bladder mucosa without the need for biopsy. Although less invasive and faster, accuracy is often lower. For this reason, machine learning (ML) algorithms are used to increase its accuracy. The issue with ML algorithms is their sensitivity to the amount of input data. In medicine, collection can be time-consuming due to a potentially low number of patients. For these reasons, data augmentation is performed, usually through a series of geometric variations of original images. While such images improve classification performance, the number of new data points and the insight they provide is limited. These issues are a motivation for the application of novel augmentation methods. Authors demonstrate the use of Deep Convolutional Generative Adversarial Networks (DCGAN) for the generation of images. Augmented datasets used for training of commonly used Convolutional Neural Network-based (CNN) architectures (AlexNet and VGG-16) show a significcan performance increase for AlexNet, where AUCmicro reaches values up to 0.99. Average and median results of networks used in grid-search increases. These results point towards the conclusion that GAN-based augmentation has decreased the networks sensitivity to hyperparemeter change.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。