A Complete Transfer Learning-Based Pipeline for Discriminating Between Select Pathogenic Yeasts from Microscopy Photographs.

阅读:6
作者:Parker Ryan A, Hannagan Danielle S, Strydom Jan H, Boon Christopher J, Fussell Jessica, Mitchell Chelbie A, Moerschel Katie L, Valter-Franco Aura G, Cornelison Christopher T
Pathogenic yeasts are an increasing concern in healthcare, with species like Candida auris often displaying drug resistance and causing high mortality in immunocompromised patients. The need for rapid and accessible diagnostic methods for accurate yeast identification is critical, especially in resource-limited settings. This study presents a convolutional neural network (CNN)-based approach for classifying pathogenic yeast species from microscopy images. Using transfer learning, we trained the model to identify six yeast species from simple micrographs, achieving high classification accuracy (93.91% at the patch level, 99.09% at the whole image level) and low misclassification rates across species, with the best performing model. Our pipeline offers a streamlined, cost-effective diagnostic tool for yeast identification, enabling faster response times in clinical environments and reducing reliance on costly and complex molecular methods.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。