A critical clinical indicator for basal cell carcinoma (BCC) is the presence of telangiectasia (narrow, arborizing blood vessels) within the skin lesions. Many skin cancer imaging processes today exploit deep learning (DL) models for diagnosis, segmentation of features, and feature analysis. To extend automated diagnosis, recent computational intelligence research has also explored the field of Topological Data Analysis (TDA), a branch of mathematics that uses topology to extract meaningful information from highly complex data. This study combines TDA and DL with ensemble learning to create a hybrid TDA-DL BCC diagnostic model. Persistence homology (a TDA technique) is implemented to extract topological features from automatically segmented telangiectasia as well as skin lesions, and DL features are generated by fine-tuning a pre-trained EfficientNet-B5 model. The final hybrid TDA-DL model achieves state-of-the-art accuracy of 97.4% and an AUC of 0.995 on a holdout test of 395 skin lesions for BCC diagnosis. This study demonstrates that telangiectasia features improve BCC diagnosis, and TDA techniques hold the potential to improve DL performance.
Hybrid Topological Data Analysis and Deep Learning for Basal Cell Carcinoma Diagnosis.
阅读:5
作者:Maurya Akanksha, Stanley R Joe, Lama Norsang, Nambisan Anand K, Patel Gehana, Saeed Daniyal, Swinfard Samantha, Smith Colin, Jagannathan Sadhika, Hagerty Jason R, Stoecker William V
| 期刊: | J Imaging Inform Med | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Feb;37(1):92-106 |
| doi: | 10.1007/s10278-023-00924-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
