Optimal sequencing depth for measuring the concentrations of molecular barcodes.

阅读:5
作者:Ocari Tommaso, Zin Emilia A, Tekinsoy Muge, Van Meter Timothé, Desrosiers Mélissa, Cammarota Chiara, Dalkara Deniz, Nemoto Takahiro, Ferrari Ulisse
In combinatorial genetic engineering experiments, next-generation sequencing (NGS) allows for measuring the concentrations of barcoded or mutated genes within highly diverse libraries. When designing and interpreting these experiments, sequencing depths are thus important parameters to take into account. Service providers follow established guidelines to determine NGS depth depending on the type of experiment, such as RNA sequencing or whole genome sequencing. However, guidelines specifically tailored for measuring barcode concentrations have not yet reached an accepted consensus. To address this issue, we combine the analysis of NGS datasets from barcoded libraries with a mathematical model taking into account the polymerase chain reaction amplification in library preparation. We demonstrate on several datasets that noise in the NGS counts increases with the sequencing depth; consequently, beyond certain limits, deeper sequencing does not improve the precision of measuring barcode concentrations. We propose, as rule of thumb, that the optimal sequencing depth should be about ten times the initial amount of barcoded DNA molecules before any amplification step.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。