Acinetobacter baumannii has developed multiple drug resistances, posing a significant threat to antibiotic efficacy. LysECD7, an endolysin derived from phages, could be a promising therapeutic agent against multi-drug resistance A. baumannii. In this study, in order to further enhance the antibacterial efficiency of the engineered LysECD7, a few lipopolysaccharide-interacting peptides (Li5, MSI594 and Li5-MSI) were genetically fused with LysECD7. Based on in vitro antibacterial activity, the fusion protein Lys-Li5-MSI was selected for further modifications aimed at extending its half-life. A cysteine residue was introduced into Lys-Li5-MSI through mutation (Lys-Li5-MSI(V12C)), followed by conjugation with a C16 fatty acid chain via a protonation substitution reaction(V12C-C16). The pharmacokinetic profile of V12C-C16 exhibited a more favorable characteristic in comparison to Lys-Li5-MSI, thereby resulting in enhanced therapeutic efficacy against lethal A. baumannii infection in mice. The study provides valuable insights for the development of novel endolysin therapeutics and proposes an alternative therapeutic strategy for combating A. baumannii infections.
Influence of Lipopolysaccharide-Interacting Peptides Fusion with Endolysin LysECD7 and Fatty Acid Derivatization on the Efficacy against Acinetobacter baumannii Infection In Vitro and In Vivo.
阅读:5
作者:Li Xiaowan, Shangguan Wenwen, Yang Xiaoqian, Hu Xiaoyue, Li Yanan, Zhao Wenjie, Feng Meiqing, Feng Jun
| 期刊: | Viruses-Basel | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 May 11; 16(5):760 |
| doi: | 10.3390/v16050760 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
