Multilabel feature selection is an effective preprocessing step for improving multilabel classification accuracy, because it highlights discriminative features for multiple labels. Recently, multi-population genetic algorithms have gained significant attention with regard to feature selection studies. This is owing to their enhanced search capability when compared to that of traditional genetic algorithms that are based on communication among multiple populations. However, conventional methods employ a simple communication process without adapting it to the multilabel feature selection problem, which results in poor-quality final solutions. In this paper, we propose a new multi-population genetic algorithm, based on a novel communication process, which is specialized for the multilabel feature selection problem. Our experimental results on 17 multilabel datasets demonstrate that the proposed method is superior to other multi-population-based feature selection methods.
Multi-Population Genetic Algorithm for Multilabel Feature Selection Based on Label Complementary Communication.
阅读:6
作者:Park Jaegyun, Park Min-Woo, Kim Dae-Won, Lee Jaesung
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2020 | 起止号: | 2020 Aug 10; 22(8):876 |
| doi: | 10.3390/e22080876 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
