Social categories such as the race or ethnicity of an individual are typically conveyed by the visual appearance of the face. The aim of this study was to explore how these differences in facial appearance are represented in human and artificial neural networks. First, we compared the similarity of faces from different races using a neural network trained to discriminate identity. We found that the differences between races were most evident in the fully connected layers of the network. Although these layers were also able to predict behavioural judgements of face identity from human participants, performance was biased toward White faces. Next, we measured the neural response in face-selective regions of the human brain to faces from different races in Asian and White participants. We found distinct patterns of response to faces from different races in face-selective regions. We also found that the spatial pattern of response was more consistent across participants for own-race compared to other-race faces. Together, these findings show that faces from different races elicit different patterns of response in human and artificial neural networks. These differences may underlie the ability to make categorical judgements and explain the behavioural advantage for the recognition of own-race faces.
Distinct patterns of neural response to faces from different races in humans and deep networks.
阅读:10
作者:Wang Ao, Sliwinska Magdalena W, Watson David M, Smith Sam, Andrews Timothy J
| 期刊: | Social Cognitive and Affective Neuroscience | 影响因子: | 3.100 |
| 时间: | 2023 | 起止号: | 2023 Nov 4; 18(1):nsad059 |
| doi: | 10.1093/scan/nsad059 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
