Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats.

阅读:8
作者:Frisbee Jefferson C, Goodwill Adam G, Frisbee Stephanie J, Butcher Joshua T, Brock Robert W, Olfert I Mark, DeVallance Evan R, Chantler Paul D
Evolution of metabolic syndrome is associated with a progressive reduction in skeletal muscle microvessel density, known as rarefaction. Although contributing to impairments to mass transport and exchange, the temporal development of rarefaction and the contributing mechanisms that lead to microvessel loss are both unclear and critical areas for investigation. Although previous work suggests that rarefaction severity in obese Zucker rats (OZR) is predicted by the chronic loss of vascular nitric oxide (NO) bioavailability, we have determined that this hides a biphasic development of rarefaction, with both early and late components. Although the total extent of rarefaction was well predicted by the loss in NO bioavailability, the early pulse of rarefaction developed before a loss of NO bioavailability and was associated with altered venular function (increased leukocyte adhesion/rolling), and early elevation in oxidant stress, TNF-α levels, and the vascular production of thromboxane A2 (TxA2). Chronic inhibition of TNF-α blunted the severity of rarefaction and also reduced vascular oxidant stress and TxA2 production. Chronic blockade of the actions of TxA2 also blunted rarefaction, but did not impact oxidant stress or inflammation, suggesting that TxA2 is a downstream outcome of elevated reactive oxygen species and inflammation. If chronic blockade of TxA2 is terminated, microvascular rarefaction in OZR skeletal muscle resumes, but at a reduced rate despite low NO bioavailability. These results suggest that therapeutic interventions against inflammation and TxA2 under conditions where metabolic syndrome severity is moderate or mild may prevent the development of a condition of accelerated microvessel loss with metabolic syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。