To address the power supply-demand imbalance caused by the uncertainty in wind turbine and photovoltaic power generation in the regional integrated energy system, this study proposes a bi-level optimization strategy that considers the uncertainties in photovoltaic and wind turbine power generation as well as demand response. The upper-level model analyzes these uncertainties by modeling short-term and long-term output errors using robust optimization theory, applies an improved stepwise carbon trading model to control carbon emissions, and finally constructs an electricity-hydrogen-carbon cooperative scheduling optimization model to reduce wind and carbon emissions. The lower-level model incentivizes users to participate in integrated demand response through dynamic energy pricing, thereby reducing the annual consumption cost of load aggregator. The Karush-Kuhn-Tucker conditions and the Big-M method are used to solve the bi-level optimization model. Simulation results indicate that the improved carbon trading model reduces carbon emissions by approximately 40.12 tons per year, a decrease of 1.1%; the prediction accuracy of the short-term error model improves by 6.77%, and the prediction accuracy of the long-term error model improves by 15.16%; the electricity-hydrogen-carbon synergistic dispatch optimization model enhances the total profit of integrated energy system operator by 14.07% and reduces the total cost of load aggregator by 10.06%.
A bi-level optimization strategy of electricity-hydrogen-carbon integrated energy system considering photovoltaic and wind power uncertainty and demand response.
阅读:4
作者:Lu Mingxuan, Teng Yun, Chen Zhe, Song Yu
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 2; 15(1):18 |
| doi: | 10.1038/s41598-024-84605-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
