The main aim of this paper is to optimize the output of diagnosis of Cardiovascular Disorders (CVD) in Photoplethysmography (PPG) signals by utilizing a fuzzy-based approach with classification. The extracted parameters such as Energy, Variance, Approximate Entropy (ApEn), Mean, Standard Deviation (STD), Skewness, Kurtosis, and Peak Maximum are obtained initially from the PPG signals, and based on these extracted parameters, the fuzzy techniques are incorporated to model the Cardiovascular Disorder(CVD) risk levels from PPG signals. Optimization algorithms such as Differential Search (DS), Shuffled Frog Leaping Algorithm (SFLA), Wolf Search (WS), and Animal Migration Optimization (AMO) are implemented to the fuzzy modeled levels to optimize them further so that the PPG cardiovascular classification can be characterized well. This kind of approach is totally new in PPG signal classification, and the results show that when fuzzy-inspired modeling is implemented with WS optimization and classified with the Radial Basis Function (RBF) classifier, a classification accuracy of 94.79% is obtained for normal cases. When fuzzy-inspired modeling is implemented with AMO and classified with the Support Vector Machine-Radial Basis Function (SVM-RBF) classifier, a classification accuracy of 95.05% is obtained for CVD cases.
Fuzzy-Inspired Photoplethysmography Signal Classification with Bio-Inspired Optimization for Analyzing Cardiovascular Disorders.
阅读:5
作者:Prabhakar Sunil Kumar, Rajaguru Harikumar, Kim Sun-Hee
| 期刊: | Diagnostics | 影响因子: | 3.300 |
| 时间: | 2020 | 起止号: | 2020 Sep 28; 10(10):763 |
| doi: | 10.3390/diagnostics10100763 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
