Convolution neural network-based Alzheimer's disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation.

阅读:7
作者:Basheera Shaik, Sai Ram M Satya
In recent times, accurate and early diagnosis of Alzheimer's disease (AD) plays a vital role in patient care and further treatment. Predicting AD from mild cognitive impairment (MCI) and cognitive normal (CN) has become popular. Neuroimaging and computer-aided diagnosis techniques are used for classification of AD by physicians in the early stage. Most of the previous machine learning techniques work on handpicked features. In the recent days, deep learning has been applied for many medical image applications. Existing deep learning systems work on raw magnetic resonance imaging (MRI) images and cortical surface as an input to the convolution neural network (CNN) to perform classification of AD. AD affects the brain volume and changes the gray matter texture. In our work, we used 1820 T2-weighted brain magnetic resonance volumes including 635 AD MRIs, 548 MCI MRIs, and 637 CN MRIs, sliced into 18,017 voxels. We proposed an approach to extract the gray matter from brain voxels and perform the classification using the CNN. A Gaussian filter is used to enhance the voxels, and skull stripping algorithm is used to remove the irrelevant tissues from enhanced voxels. Then, those voxels are segmented by hybrid enhanced independent component analysis. Segmented gray matter is used as an input to the CNN. We performed clinical valuation using our proposed approach and achieved 90.47% accuracy, 86.66% of recall, and 92.59% precision.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。