Neuronal Depolarization Induced RNA m5C Methylation Changes in Mouse Cortical Neurons

神经元去极化诱导小鼠皮质神经元 RNA m5C 甲基化变化

阅读:6
作者:Xiguang Xu, Zachary Johnson, Hehuang Xie

Abstract

Neuronal activity is accomplished via substantial changes in gene expression, which may be accompanied by post-transcriptional modifications including RNA cytosine-5 methylation (m5C). Despite several reports on the transcriptome profiling of activated neurons, the dynamics of neuronal mRNA m5C modification in response to environmental stimuli has not been explored. Here, we provide transcriptome-wide maps of m5C modification, together with gene expression profiles, for mouse cortical neurons at 0 h, 2 h, and 6 h upon membrane depolarization. Thousands of differentially expressed genes (DEGs) were identified during the neuronal depolarization process. In stimulated neurons, the majority of early response genes were found to serve as expression regulators of late response genes, which are involved in signaling pathways and diverse synaptic functions. With RNA bisulfite sequencing data, a union set of 439 m5C sites was identified with high confidence, and approximately 30% of them were shared by neurons at all three time points. Interestingly, over 41% of the m5C sites showed increased methylation upon neuronal activation and were enriched in transcripts coding for proteins with synaptic functions. In addition, a modest negative correlation was observed between RNA expression and methylation. In summary, our study provided dynamic transcriptome-wide landscapes of RNA m5C methylation in neurons, and revealed that mRNA m5C methylation is associated with the regulation of gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。